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COMMENT 

Moment approach for mixed parity potentials 

J Killingbeck 
Department of Physics, University of Hull, UK 

Received 25 January 1988 

Abstract. A moment approach to the calculation of energy levels for mixed parity potentials 
is described and is tested by means of a formula from the theory of odd parity perturbations. 

1. Introduction 

The use of so-called moment or inner product methods for the calculation of the 
eigenvalues of the perturbed oscillator Schrodinger equation 

Ht,!J=-D*t,!J+C VMxMt,!J=Et,!J (1) 

(with M = 2,4,6) has been described by several authors (Blankenbecler et al 1980, 
Killingbeck et al 1985, Handy and Bessis 1985). In this comment we show that one 
such method can be extended to work for potentials of mixed parity and then use it 
in conjunction with a formula of perturbation theory which we derive from an argument 
involving translational invariance. Section 2 describes the moment method, 0 3 presents 
the relevant perturbation theory and 0 4 gives some illustrative numerical results. 

2. Use of the recurrence relations 

The methods of calculation used by the authors cited above start from the equation 

(41xNHI$)= E ( 4 1 X N I * )  (2) 
obtained by taking the inner product of the Schrodinger equation (1) with the product 
xN4, where the reference function 

4 = exp(-px2/2) (3) 
contains an adjustable parameter p. Using the H of ( 1 )  to work out the left-hand side 
of (2) gives the recurrence relation 

N (  N - 1 )S,-* = [ ( 2 N  + 1)p - E I S ,  - p’s,,, + V,S,,M (4) 

SN =(41xNl$) ( 5 )  

where the S,, sometimes called moments, are defined by 

for some fixed (but arbitrary) normalisation of 4 and $. 
When the indices M in (1) are all even integers, then the eigenfunctions $ have a 

well defined parity. In that case (Killingbeck 1987) the even parity energies are found 
by setting 

s, = 1 s, = o  ( N >  0) (6) 
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(for a sufficiently large even integer Q )  and picking a trial E value. The S ,  for even 
N down to N = 0 are then evaluated using (4) and the function 

(7) Fo( E 1 = ( P  - E 1 So - P2S2 + VMSM 
is rendered zero by varying E. Odd parity levels are found by using an odd integer Q 
in the initial condition ( 6 )  and by varying E to render zero the function 

Fi(E)=(3P-E)S,-P2S,+C V M S M + ~ .  (8) 
We observe that in calculating each energy level we actually make both Fo( E )  and 

F , ( E )  zero, with one equation being fulfilled trivially. To find the energy levels for 
mixed parity potentials we again make both functions zero, but now have a non-trivial 
problem, since the odd parity terms in the potential couple together the S N  with even 
and odd N. Equation (4) gives us the value of So, SI,  etc to insert in (7) and (8), 
provided that we have the right starting values at large N. We found that the appropriate 
procedure is to use the conditions 

and to vary both R and E to render both F o ( E )  and F , ( E )  zero. To solve the 
two-variable problem the most simple approach is to find first an energy level with 
the odd parity terms omitted (so that R is zero). For example, to find an even parity 
level we vary E to make F o ( E )  zero, holding R at zero, with Q a sufficiently large 
even integer. Then, with the odd parity terms turned on, we still vary E (with R fixed) 
to make Fo( E )  zero, but also vary R (with E fixed) to make F,( E )  zero. This sequential 
process, which modifies one variable at a time, converges quickly when the odd parity 
terms do not displace the initial energy by much. (This point is discussed further in 0 3.) 

s, = 1 SQ-l= R s, = o  ( N >  0) (9) 

3. A special perturbation formula 

In general, when an even parity potential V gives rise to an energy level Eo, the effect 
of adding an odd parity potential AF to V is to perturb the energy level in a way 
described by the perturbation series 

(10) 
in which only even powers of A appear (Byers Brown 1972). The effective strength of 
the odd parity perturbation is thus of order A’, which helps to explain why the 
computational procedure described in this work is successful. 

For the Schrodinger equation in one dimension, with boundary conditions +( *CO)  = 
0, we have the obvious principle that a translational shift of the potential should not 
affect the bound state energies. However, from the viewpoint of perturbation theory 
a change of the potential from V ( x )  to V ( x +  S) changes the potential to 

V ( x + S ) =  v ( x ) + S v ’ ( x ) + + S 2 V ( x ) + .  . . (11) 
and so should change the energy to 

E ( 8 )  = Eo + SEI ( v, V ’  ) + S2[ ;El ( v, V ” )  + E,( v, V ’ )  ] + . . , (12) 
where E,( V, F )  denotes the nth order energy perturbation coefficient for a perturbation 
AF added to the potential V. Since the energy is actually unchanged we obtain from 
(12) the results 

E ( h )  = Eo+A2Ez+A4E,+ . . . 

El( v, V ’ )  = (+I V’l+)  = 0 

E,( v, V ’ )  = -+El( v, V )  = -+(+I V ” / + )  
(13) 
(14) 
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where J, is any bound state eigenfunction associated with the potential V.  Equation 
(13) is the usual result that the mean force is zero. From the less familiar equation 
(14) we can produce results such as E 2 ( x 2 ,  x )  = -$ and E 2 ( x 4 ,  x’) = -i(J,[x’lJ,) ,  which 
can be used to provide tests of the numerical method described in § 2. 

4. Specimen results 

We give some results obtained by applying the method of § 2 to calculate the quantities 
on both sides of the equation 

E ~ ( x ~ ,  x ’ )  = - i (+/x21+).  (15) 

To calculate a quantity such as ( x 2 )  an approach based on energies can be used 
(Killingbeck 1985) by applying the prescription 

2E(x*)= E ( X 4 + & X ’ ) - E ( X 4 - & X 2 )  (16) 

in the limit E + 0. The computation actually uses two or three small E values and the 
Richardson extrapolation. To calculate E 2 ( x 4 ,  x’) involves taking a one-sided deriva- 
tive using the equation 

E ’ E ’ ( x ~ ,  x 3 )  = E ( x ~ +  E X ’ ) -  E ( x ~ )  (17) 

(for E + O ) .  Applying (16) and (17) to verify (15) thus provides a reasonably severe 
test of the accuracy of the energy values produced by the modified moment technique 
described earlier. Readers wishing to implement the methods of this work should note 
that computer underflow and overflow problems can be minimised by using the 
quantities F N S N  instead of S N ,  with F some simple scaling factor. The required 
modification in the algebra is straightforward. 

Table 1 shows some energy results for the four lowest states associated with the 
potential x 4 .  The value of the parameter Q was set at 50 for the states with mainly 
even parity and at 51 for the states with mainly odd parity. Adding 10 to Q did not 
change the energies. The roots of the functions Fo and F1 were located quickly by 
using the numerical Newton’s method (Killingbeck 1985) which locates the roots of 
a function f ( x )  by using the iterative formula 

x ’ = x + h f ( x ) l f ( x ) -  f ( x +  h ) ] - ’  (18) 

with h = 
to five digits for the states considered. 

A single E value of in (16) was found to be adequate to find (x’ )  

Table 1. Lowest four energy levels for the case V ,  = 0 and various values of V = ( V , ,  V , ,  V4). 
p = 5 throughout. 

V 

(09% 1) 1.060 3621 3.799 6730 7.455 6980 11.644 746 
(0,0.1,1)  1.059 0028 3.796 2900 7.451 0284 11.638 902 
(0,0.2, 1) 1.054 905 1 3.786 1172 7.436 9980 11.621 348 
(0.01,0, 1) 1.063 9789 3.808 6833 7.468 1404 11.660 320 
(-O.Ol,O, 1) 1.056 7384 3.7906512 7.443 2461 11.629 162 
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The use of the results in the table in conjunction with formulae (16) and (17)  shows 
that the theoretical relation (15)  is obeyed and provides the following numerical values 
for the quantity 1E2(x4, x3)l associated with the four lowest states: 

0.135 76 0.338 10 0.466 77 0.584 21. 
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